108 research outputs found

    On the decomposition of tabular knowledge systems.

    Get PDF
    Recently there has been a growing interest in the decomposition of knowledge based systems and decision tables. Much work in this area has adopted an informal approach. In this paper, we first formalize the notion of decomposition, and then we study some interesting classes of decompositions. The proposed classification can be used to formulate design goals to master the decomposition of large decision tables into smaller components. Importantly, carrying out a decomposition eliminates redundant information from the knowledge base, thereby taking away -right from the beginning- a possible source of inconsistency. This, in turn, renders subsequent verification and validation more smoothly.Knowledge; Systems;

    Formal specification techniques in object-oriented analysis: a comparative view.

    Get PDF
    During the last decade, object orientation has been advanced as a promising paradigm for software construction. In addition several authors have advocated the use of formal specification techniques during software development. Formal methods enable reasoning (in a mathematical sense) about properties of programs and systems. It is clear that also object oriented software development can benefit from the use of formal techniques.But although the object oriented analysis (OOA) methods claim to provide the necessary concepts and tools to improve the quality of software development, they are in general informal. This is surprising as the modeling techniques used in OOA have a high potential for formalization. The purpose of this study is to compare the specification techniques used in current OOA-methods. In particular, the degree of formality provided by most of the methods is discussed and evaluated from a quality control perspective.Software; Methods; Programs; Systems; Studies; Quality control;

    Government Response to Political Activism: Conflict between the Public and the State, Genoa 2001

    Get PDF
    Protests represent an extremely delicate issue for governments and authorities in terms of security and democracy. Most recently in the last decade, demonstrations have acquired a global and international characterisation, rendering these trans-national phenomena. This research is a case study which aims to contribute to the political development of Italy by analysing the policies in relation to the management of protests by using theoretical frameworks drawn from fields of social and political sciences such as Public Policy and Peace and Conflict studies. The goal of this research is to analyse events in a broader picture, investigating democratic values and state response to social movements such as protests. In other words, it seeks to answer the following questions: How was the government response conceived and what impact did this have on state values of security, democracy and justice? Considering comparable cases, what was the impact in terms of policy and practice of these strategies? How can public policy theories of social construction help to explain the government response and thus contribute to prevention of such violence in future

    A SAT-based System for Consistent Query Answering

    Full text link
    An inconsistent database is a database that violates one or more integrity constraints, such as functional dependencies. Consistent Query Answering is a rigorous and principled approach to the semantics of queries posed against inconsistent databases. The consistent answers to a query on an inconsistent database is the intersection of the answers to the query on every repair, i.e., on every consistent database that differs from the given inconsistent one in a minimal way. Computing the consistent answers of a fixed conjunctive query on a given inconsistent database can be a coNP-hard problem, even though every fixed conjunctive query is efficiently computable on a given consistent database. We designed, implemented, and evaluated CAvSAT, a SAT-based system for consistent query answering. CAvSAT leverages a set of natural reductions from the complement of consistent query answering to SAT and to Weighted MaxSAT. The system is capable of handling unions of conjunctive queries and arbitrary denial constraints, which include functional dependencies as a special case. We report results from experiments evaluating CAvSAT on both synthetic and real-world databases. These results provide evidence that a SAT-based approach can give rise to a comprehensive and scalable system for consistent query answering.Comment: 25 pages including appendix, to appear in the 22nd International Conference on Theory and Applications of Satisfiability Testin

    The effect of drifts on the decay phase of SEP events

    Get PDF
    Aims. We study the effect of the magnetic gradient and curvature drifts on the pitch-angle dependent transport of solar energetic particles (SEPs) in the heliosphere, focussing on similar to 3-36 MeV protons. By considering observers located at different positions in the heliosphere, we investigate how drifts may alter the measured intensity-time profiles and energy spectra. We focus on the decay phase of solar energetic proton events in which a temporal invariant spectrum and disappearing spatial intensity gradients are often observed; a phenomenon known as the "reservoir effect" or the "SEP flood". We study the effects of drifts by propagating particles both in nominal and non-nominal solar wind conditions.Methods. We used a three-dimensional (3D) particle transport model, solving the focused transport equation extended with the effect of particle drifts in the spatial term. Nominal Parker solar wind configurations of different speeds and a magnetohydrodynamic (MHD) generated solar wind containing a corotating interaction region (CIR) were considered. The latter configuration gives rise to a magnetic bottle structure, with one bottleneck at the Sun and the other at the CIR. We inject protons from a fixed source at 0.1 AU, the inner boundary of the MHD model.Results. When the drift induced particle net-flux is zero, the modelled intensity-time profiles obtained at different radial distances along an IMF line show the same intensity fall-off after the prompt phase of the particle event, which is in accordance with the SEP flood phenomenon. However, observers magnetically connected close to the edges of the particle injection site can experience, as a result of drifts, a sudden drop in the intensities occurring at different times for different energies such that no SEP flood phenomenon is established. In the magnetic bottle structure, this effect is enhanced due to the presence of magnetic field gradients strengthening the nominal particle drifts. Moreover, anisotropies can be large for observers that only receive particles through drifts, illustrating the importance of pitch-angle dependent 3D particle modelling. We observe that interplanetary cross-field diffusion can mitigate the effects of particle drifts.Conclusions. Particle drifts can substantially modify the decay phase of SEP events, especially if the solar wind contains compression regions or shock waves where the drifts are enhanced. This is, for example, the case for our CIR solar wind configuration generated with a 3D MHD model, where the effect of drifts is strong. A similar decay rate in different energy channels and for different observers requires the mitigation of the effect of drifts. One way to accomplish this is through interplanetary cross-field diffusion, suggesting thus a way to determine a minimum value for the cross-field diffusion strength.Peer reviewe

    Prioritized Repairing and Consistent Query Answering in Relational Databases

    Get PDF
    A consistent query answer in an inconsistent database is an answer obtained in every (minimal) repair. The repairs are obtained by resolving all conflicts in all possible ways. Often, however, the user is able to provide a preference on how conflicts should be resolved. We investigate here the framework of preferred consistent query answers, in which user preferences are used to narrow down the set of repairs to a set of preferred repairs. We axiomatize desirable properties of preferred repairs. We present three different families of preferred repairs and study their mutual relationships. Finally, we investigate the complexity of preferred repairing and computing preferred consistent query answers.Comment: Accepted to the special SUM'08 issue of AMA

    Interplanetary spread of solar energetic protons near a high-speed solar wind stream

    Get PDF
    Aims. We study how a fast solar wind stream embedded in a slow solar wind influences the spread of solar energetic protons in interplanetary space. In particular, we aim at understanding how the particle intensity and anisotropy vary along interplanetary magnetic field (IMF) lines that encounter changing solar wind conditions such as the shock waves bounding a corotating interaction region (CIR). Moreover, we study how the intensities and anisotropies vary as a function of the longitudinal and latitudinal coordinate, and how the width of the particle intensities evolves with the heliographic radial distance. Furthermore, we study how cross-field diffusion may alter these spatial profiles. Methods. To model the energetic protons, we used a recently developed particle transport code that computes particle distributions in the heliosphere by solving the focused transport equation (RTE) in a stochastic manner. The particles are propagated in a solar wind containing a CIR, which was generated by the heliospheric model, EUHFORIA. We study four cases in which we assume a delta injection of 4 MeV protons spread uniformly over different regions at the inner boundary of the model. These source regions have the same size and shape, yet are shifted in longitude from each other, and are therefore magnetically connected to different solar wind conditions. Results. The intensity and anisotropy profiles along selected IMF lines vary strongly according to the different solar wind conditions encountered along the field line. The IMF lines crossing the shocks bounding the CIR show the formation of accelerated particle populations, with the reverse shock wave being a more efficient accelerator than the forward shock wave. The longitudinal intensity profiles near the CIR are highly asymmetric in contrast to the profiles obtained in a nominal solar wind. For the injection regions that do not cross the transition zone between the fast and slow solar wind, we observe a steep intensity drop of several orders of magnitude near the stream interface (SI) inside the CIR. Moreover, we demonstrate that the longitudinal width of the particle intensity distribution can increase, decrease, or remain constant with heliographic radial distance, reflecting the underlying IMF structure. Finally, we show how the deflection of the IMF at the shock waves and the compression of the IMF in the CIR deforms the three-dimensional shape of the particle distribution in such a way that the original shape of the injection profile is lost.Peer reviewe

    Modelling three-dimensional transport of solar energetic protons in a corotating interaction region generated with EUHFORIA

    Get PDF
    Aims. We introduce a new solar energetic particle (SEP) transport code that aims at studying the effects of different background solar wind configurations on SEP events. In this work, we focus on the influence of varying solar wind velocities on the adiabatic energy changes of SEPs and study how a non-Parker background solar wind can trap particles temporarily at small heliocentric radial distances (less than or similar to 1.5AU) thereby influencing the cross-field diffusion of SEPs in the interplanetary space. Methods. Our particle transport code computes particle distributions in the heliosphere by solving the focused transport equation (FTE) in a stochastic manner. Particles are propagated in a solar wind generated by the newly developed data-driven heliospheric model, EUHFORIA. In this work, we solve the FTE, including all solar wind effects, cross-field diffusion, and magnetic-field gradient and curvature drifts. As initial conditions, we assume a delta injection of 4 MeV protons, spread uniformly over a selected region at the inner boundary of the model. To verify the model, we first propagate particles in nominal undisturbed fast and slow solar winds. Thereafter, we simulate and analyse the propagation of particles in a solar wind containing a corotating interaction region (CIR). We study the particle intensities and anisotropies measured by a fleet of virtual observers located at different positions in the heliosphere, as well as the global distribution of particles in interplanetary space. Results. The differential intensity-time profiles obtained in the simulations using the nominal Parker solar wind solutions illustrate the considerable adiabatic deceleration undergone by SEPs, especially when propagating in a fast solar wind. In the case of the solar wind containing a CIR, we observe that particles adiabatically accelerate when propagating in the compression waves bounding the CIR at small radial distances. In addition, for r greater than or similar to 1.5AU, there are particles accelerated by the reverse shock as indicated by, for example, the anisotropies and pitch-angle distributions of the particles. Moreover, a decrease in high-energy particles at the stream interface (SI) inside the CIR is observed. The compression /shock waves and the magnetic configuration near the SI may also act as a magnetic mirror, producing long-lasting high intensities at small radial distances. We also illustrate how the efficiency of the cross-field diffusion in spreading particles in the heliosphere is enhanced due to compressed magnetic fields. Finally, the inclusion of cross-field diffusion enables some particles to cross both the forward compression wave at small radial distances and the forward shock at larger radial distances. This results in the formation of an accelerated particle population centred on the forward shock, despite the lack of magnetic connection between the particle injection region and this shock wave. Particles injected in the fast solar wind stream cannot reach the forward shock since the SI acts as a diffusion barrier.Peer reviewe

    Observation-based modelling of the energetic storm particle event of 14 July 2012

    Get PDF
    Aims. We model the energetic storm particle (ESP) event of 14 July 2012 using the energetic particle acceleration and transport model named 'PArticle Radiation Asset Directed at Interplanetary Space Exploration' (PARADISE), together with the solar wind and coronal mass ejection (CME) model named 'EUropean Heliospheric FORcasting Information Asset' (EUHFORIA). The simulation results illustrate both the capabilities and limitations of the utilised models. We show that the models capture some essential structural features of the ESP event; however, for some aspects the simulations and observations diverge. We describe and, to some extent, assess the sources of errors in the modelling chain of EUHFORIA and PARADISE and discuss how they may be mitigated in the future. Methods. The PARADISE model computes energetic particle distributions in the heliosphere by solving the focused transport equation in a stochastic manner. This is done using a background solar wind configuration generated by the ideal magnetohydrodynamic module of EUHFORIA. The CME generating the ESP event is simulated by using the spheromak model of EUHFORIA, which approximates the CME's flux rope as a linear force-free spheroidal magnetic field. In addition, a tool was developed to trace CME-driven shock waves in the EUHFORIA simulation domain. This tool is used in PARADISE to (i) inject 50 keV protons continuously at the CME-driven shock and (ii) include a foreshock and a sheath region, in which the energetic particle parallel mean free path, lambda(parallel to), decreases towards the shock wave. The value of lambda(parallel to) at the shock wave is estimated from in situ observations of the ESP event. Results. For energies below similar to 1 MeV, the simulation results agree well with both the upstream and downstream components of the ESP event observed by the Advanced Composition Explorer. This suggests that these low-energy protons are mainly the result of interplanetary particle acceleration. In the downstream region, the sharp drop in the energetic particle intensities is reproduced at the entry into the following magnetic cloud, illustrating the importance of a magnetised CME model.Peer reviewe
    corecore